8,148 research outputs found

    Albedo electrons between 12 and 1000 MeV

    Get PDF
    Balloon measurements of albedo electron fluxe

    On the Orbital Period of the Intermediate Polar 1WGA J1958.2+3232

    Full text link
    Recently, Norton et al. 2002, on the basis of multiwavelength photometry of 1WGA J1958.2+3232, argued that the -1 day alias of the strongest peak in the power spectrum is the true orbital period of the system, casting doubts on the period estimated by Zharikov et al. 2001. We re-analyzed this system using our photometric and spectroscopic data along with the data kindly provided by Andy Norton and confirm our previous finding. After refining our analysis we find that the true orbital period of this binary system is 4.35h.Comment: 4 pages, 5 figures, Accepted for publication in A&A Letter

    Edge modes in band topological insulators

    Full text link
    We characterize gapless edge modes in translation invariant topological insulators. We show that the edge mode spectrum is a continuous deformation of the spectrum of a certain gluing function defining the occupied state bundle over the Brillouin zone (BZ). Topologically non-trivial gluing functions, corresponding to non-trivial bundles, then yield edge modes exhibiting spectral flow. We illustrate our results for the case of chiral edge states in two dimensional Chern insulators, as well as helical edges in quantum spin Hall states.Comment: 4 pages, 2 figures; v4 minor change

    Dark matter in natural supersymmetric extensions of the Standard Model

    Full text link
    We explore the dark matter sector in extensions of the Minimal Supersymmetric Standard Model (MSSM) that can provide a good fit to the PAMELA cosmic ray positron excess, while at the same time addressing the little hierarchy problem of the MSSM. Adding a singlet Higgs superfield, S, can account for the observed positron excess, as recently discussed in the literature, but we point out that it requires a fine-tuned choice for the parameters of the model. We find that including an additional singlet allows both a reduction of the weak-scale fine-tuning, and an interpretation of the cosmic ray observations in terms of dark matter annihilations in the galactic halo. Our setup contains a light axion, but does not require light CP-even scalars in the spectrum.Comment: 26 pages, 8 figures, references adde

    On the Transfer of Metric Fluctuations when Extra Dimensions Bounce or Stabilize

    Full text link
    In this report, we study within the context of general relativity with one extra dimension compactified either on a circle or an orbifold, how radion fluctuations interact with metric fluctuations in the three non-compact directions. The background is non-singular and can either describe an extra dimension on its way to stabilization, or immediately before and after a series of non-singular bounces. We find that the metric fluctuations transfer undisturbed through the bounces or through the transients of the pre-stabilization epoch. Our background is obtained by considering the effects of a gas of massless string modes in the context of a consistent 'massless background' (or low energy effective theory) limit of string theory. We discuss applications to various approaches to early universe cosmology, including the ekpyrotic/cyclic universe scenario and string gas cosmology.Comment: V2. Minor Clarifications V3. appendix and 2 figures added, typos corrected, conclusions unchanged 12 pages, 6 figure

    Detection of X-ray-Emitting Hypernova Remnants in M101

    Full text link
    Based on an ultra deep (230 ks) ROSAT HRI imaging of M101, we have detected 5 X-ray sources that coincide spatially with optical emission line features previously classified as supernova remnants in this nearby galaxy. Two of these coincidences (SNR MF83 and NGC5471B) most likely represent the true physical association of X-ray emission with shock-heated interstellar gas. MF83, with a radius of ~ 134 pc, is one of the largest remnants known. NGC5471B, with a radius of 30 pc and a velocity of at least 350 km/s (FWZI), is extremely bright in both radio and optical. The X-ray luminosities of these two shell-like remnants are ∼1\sim 1 and 3×1038ergs/s3 \times 10^{38} ergs/s (0.5-2 keV), about an order of magnitude brighter than the brightest supernova remnants known in our Galaxy and in the Magellanic Clouds. The inferred blastwave energy is ∼3×1052ergs\sim 3 \times 10^{52} ergs for NGC5471B and ∼3×1053\sim 3 \times 10^{53} ergs for MF83. Therefore, the remnants likely originate in hypernovae, which are a factor of ≳10\gtrsim 10 more energetic than canonical supernovae and are postulated as being responsible for Gamma-ray bursts observed at cosmological distances. The study of such hypernova remnants in nearby galaxies has the potential to provide important constraints on the progenitor type, rate, energetics, and beaming effect of Gamma-ray bursts.Comment: 10 pages, 2 gif figures, Accepted for publication in Astrophysical Journal Letter

    Relative abundances of elements (20 or = Z or = 28) at energies up to 70 GeV/amu using relativistic rise in ion chambers

    Get PDF
    The results of a new balloon borne cosmic ray detector flown from Palestine, TX in Sept., 1982 are discussed. The exposure of 62 square meter-ster-hr is sufficient to prove the concept of using gas ionization chambers as energy measuring devices in the relativistic rise region. The abundances, relative Fe-26, of the pure secondaries Cr-22 and Ti-24, the pure primary Ni26, and the mixed primary and secondary Ca-20 between 6 and 70GeV/amu were measured

    Creating (and Teaching) the "Bail-To-Jail" Course

    Get PDF

    Inverse Square Law of Gravitation in (2+1)-Dimensional Space-Time as a Consequence of Casimir Energy

    Full text link
    The gravitational effect of vacuum polarization in space exterior to a particle in (2+1)-dimensional Einstein theory is investigated. In the weak field limit this gravitational field corresponds to an inverse square law of gravitational attraction, even though the gravitational mass of the quantum vacuum is negative. The paradox is resolved by considering a particle of finite extension and taking into account the vacuum polarization in its interior.Comment: 10 pages, LaTeX, Report: UPR-0540-T, To appear in Physica Script
    • …
    corecore